Bemerkung zu

Shayle R. Searle: Die Rekursionsformeln für arithmetische Mittel und Varianzen H. Gundel

Aus mehr technischen Gründen mag es sinnvoll sein, statt der von S. R. Searle angegebenen Formeln (4) und (1) die beiden folgenden (leicht modifizierten) Rekursionsformeln für die Summe S_{n}^{z} der quadratischen Abweichungen vom arithmetischen Mittel und für das arithmetische Mittel M_{n} von Daten x_{1},\ldots,x_{n} zu verwenden:

$$S_0^2 = 0$$
, $M_0 = 0$

und für n = 1, 2, 3, ...

$$S_n^2 = S_{n-1}^2 + (x_n - M_{n-1})^2 - (n-1)/n$$

und

$$M_n = M_{n-1} + (x_n - M_{n-1})/n$$

Zur Berechnung von S_{n+1}^2 nach Formel (4) muß der Wert des "alten" Mittels M_n und der Wert des "neuen" Mittels M_{n+1} zur Verfügung stehen. Dies hat bei Verwendung eines Rechners den Nachteil, daß nach der Berechnung von M_{n+1} nach Formel (1) zusätzlich zum Wert von M_{n+1} auch noch der Wert von M_n gespeichert sein muß. Überdies wird oben die Rekursion von n auf n-1 statt von n+1 auf n betrachtet, damit nicht so häufig n+1 berechnet zu werden braucht. (Gedacht ist dabei etwa daran, daß statt der BASIC-Anweisung $M = M_{n+1}(X(N+1)-M)/(N+1)$ die Anweisung $M = M_{n+1}(X(N)-M)/N$ verwendet wird.)

Die angegebene Formel für $S_{\hat{n}}^{z}$ gewinnt man leicht aus (4) bei Berücksichtigung von (1).

LITERATUR:

Kahan, W. und Parlett, B. N.: Können Sie sich auf Ihren Rechner verlassen? In: Jahrbuch Überblicke Mathematik 1978, Bibliographisches Institut, Mannheim, S. 199-216.